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This paper presents a numerical procedure to determine the deflection of concrete members reinforced
with fiber reinforced polymer (FRP) or steel bars. This procedure is implemented into the stiffness matrix
to allow for general use in the structural analysis. It considers effective flexibilities of members in the
cracked state using either the curvature distribution along the member or available effective stiffness
models under any loading or support condition. In general, structural concrete members can be consid-
ered to have three cracked regions (two at the ends and one at midspan) and two uncracked regions along
their length. In this numerical procedure, the contributions of these regions to the member stiffness
matrix are computed using a numerical integration technique. Using this procedure, a software program
is developed which allows for the load–deflection behavior of a member reinforced with either FRP or
steel bars and subjected to any loading or support condition to be rapidly determined. This calculation
procedure is evaluated using available experimental data on the load–deflection behavior of simple
and two-span beams reinforced with FRP and steel bars. Through comparison of the results, it is observed
that the load–deflection behaviors calculated using the proposed approach utilizing the member
moment–curvature response are consistent with the experimental data. This approach can provide a use-
ful tool for the general calculation of deflection regardless of reinforcement type and can be used
throughout the entire range of member behavior up to flexural failure.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The use of fiber reinforced polymer (FRP) bars in structural con-
crete has rapidly increased in the last two decades due to their
superior durability, excellent corrosion resistance, non-magnetic
properties, and high strength-to-weight ratio compared to conven-
tional steel bars. On the other hand, FRP bars have a lower modulus
of elasticity compared to steel. Because of this fact, the same
amount of reinforcement exhibits larger deflections and crack
widths in FRP reinforced concrete members than in steel reinforced
concrete members. Hence, the design of such members is typically
governed by the serviceability limit state, and accurate determina-
tion of deflection becomes very important.

Recently, there has been extensive research to investigate the
flexural behavior of FRP reinforced concrete members [1–17].
Many design approaches to calculate the deflection of FRP rein-
forced concrete members have been proposed in these studies.
For the case of service level deflections, some authors have
presented additional coefficients taking into account the specific
properties of FRP bars. These coefficients are used to modify
Branson’s equation, which is semi-empirical and commonly used
for steel reinforced concrete members in design codes [18], to
compute the effective moment of inertia of members reinforced
by FRP bars. Others have presented a modified equivalent moment
of inertia derived from assumed moment–curvature relationships
of the FRP reinforced concrete [19–27]. These models, however,
are not completely generalized to work with all loading and
support conditions.

The purpose of this research is to develop a numerical proce-
dure that can be implemented into the stiffness matrix in the
structural analysis so that the deflection of concrete members
reinforced with FRP or steel bars can be determined under any
loading or support condition. In this procedure, member flexibility
is determined using either the moment–curvature relationship of
the reinforced concrete section obtained from a cracked-section
analysis or available semi-empirical effective stiffness models.
A software program was developed using this procedure which
allows the load–deflection behavior of a member reinforced with
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either FRP or steel bars to be rapidly calculated for any loading or
support condition.

2. Effective flexibility models for cracked members

To determine the deflection of concrete members reinforced
with FRP bars, the effective flexibility of the cracked member is
required. In the literature, the effective flexibility of cracked mem-
bers is calculated using different semi-empirical equations as
follows:

ACI 440.1R [28,29]:
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EcIcr
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where Ec; Ef , and Es are the modulus of elasticity of concrete, FRP,
and steel reinforcement; M is the applied bending moment; Mcr is
the flexural cracking moment of the section; Ig and Icr are the
moments of inertia of the gross and cracked transformed section;
and qf and qfb are the FRP tensile reinforcement ratio and FRP
reinforcement ratio producing balanced strain conditions, respectively.

ACI 440-H [17]:
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Bischoff [21], ISIS [30] and CEB [31]
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where:
b1b2 ¼ 1:0 in Bischoff, b1b2 ¼ 0:5 in ISIS and b1b2 ¼ 0:8 in CEB

models.
Benmokrane et al. [1]
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Yost et al. [8]:

Same as Eq. (1b) except ab ¼ 0:064 qf
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Toutanji and Saafi [4]:
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For all models, the effective flexibility of the member is:

1
EcIeff

¼ 1
EcIg

for M < Mcr ð6Þ

The models listed above for calculating the flexibility of a FRP
reinforced concrete member are derived from the semi-empirical
Branson’s equation [32]. In these models, the stress–strain rela-
tionships of the concrete and reinforcement are not considered.
Instead, empirically derived correction factors are used to improve
the deflection prediction of the models.

Other models available in the literature for calculating deflec-
tions are based on interpolation between a fully cracked and
uncracked state of the member using the curvature distribution.
In these models, closed form equations for deflection calculations
are developed for only specific member boundary conditions and
loading types [19–25].

The present study proposes the use of the complete moment–
curvature relationship obtained from a sectional analysis and tak-
ing into account the stress–strain relationships of the concrete and
reinforcement. A general purpose software program was also
developed based on the stiffness matrix formulation of the mem-
ber in either the cracked or uncracked state.

3. Moment–curvature analysis

Moment–curvature relationships are developed for rectangular
concrete sections reinforced with either steel or FRP reinforcement.
For this analysis, it is considered that the reinforcement may be in
either tension or compression regions. The following material con-
stitutive laws are considered:

3.1. Concrete stress–strain models

Any model for concrete in compression can be used in the anal-
ysis procedure. For example, if the CEB-FIB model [33] is used, the
following equations are considered:

f c ¼ f 0c
2ec

eco
� ec

eco

� �2
" #

ec 6 eco ð7aÞ

f c ¼ f 0c eco 6 ec 6 ecu ð7bÞ

where f c and ec are the compressive stress and strain in concrete; f 0c
is the cylinder compressive strength of concrete; and eco and ecu are
the strain in concrete at maximum stress and the ultimate strain of
concrete as shown in Fig. 1(a) and (b). If the Hognestad model is
assumed, only Eq. (7a) is used with the concrete strain ec 6 ecu .

Any model of the tensile stress–strain relationship of concrete
can also be used. If a bilinear stress–strain relationship is used,
the following equations are considered:

f t ¼ Ecet et 6 ecr ð8aÞ

f t ¼ f r �
f r

ectu � ecr
et � ecrð Þ; ectu P et P ecr ð8bÞ

ectu ¼ atsecr ð8cÞ

where f t and et are the tensile stress and strain of the concrete; Ec is
the tensile modulus of concrete, assumed to be same as the modu-
lus of elasticity in compression; f r and ecr are the modulus of rup-
ture of the concrete and the corresponding cracking strain; and
ectu is the ultimate tensile strain of the concrete, assumed to be ats

times of the cracking strain ðecrÞ as shown in Fig. 1(c). The parame-
ter ats controls tension stiffening which affects the moment–
curvature relationships particularly at initial cracking stages of
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Fig. 5. Cantilever beam model for computing basic nodal deformation parameters.
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the section with lower reinforcement ratios. The values of ats pro-
posed by different authors [34,35] range from 5 to 25.

3.2. FRP stress–strain model

The stress–strain relationship of FRP bars is linear elastic up to
rupture and is given by:

f f ¼ Ef ef ef 6 efu ð9Þ

where f f and ef are stress and corresponding strain in FRP bars; Ef is
the modulus of elasticity of FRP bars; and efu is the ultimate strain of
FRP bars as shown in Fig. 2(a).
(c) stress distribution and forces 
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Fig. 3. Strain, stresses and forces of concrete section reinforced with FRP or steel bars.
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3.3. Steel stress–strain model

The stress–strain relationship of steel is modeled as an elastic–
plastic material and is given by:

f s ¼ Eses 6 f y ð10Þ

where f s and es are stress and corresponding strain in steel bars;
and Es and f y are the modulus of elasticity and yield strength of steel
as shown in Fig. 2(b).

The moment capacity and curvature equations corresponding to
a specific deformation are developed using an incremental defor-
mation technique. Fig. 3 shows a linear distribution of strain, the
corresponding stress distribution, and the stress resultants of the
FRP or steel reinforced concrete section. The concrete section is
divided into n segments. The numerical procedure starts by assum-
ing a small value of strain at the concrete extreme compression
fiber. The depth of neutral axis x is initially assumed as half the
effective depth of the section and then iteratively corrected until
force equilibrium is satisfied. With the assumption that plane sec-
tions remain plane after bending, the concrete strain at segment i
and strains in the compression and tension reinforcing bars assum-
ing perfect bond between concrete and FRP or steel bars can be
expressed as follows:

ei ¼
x� xi

x
ec; e0s or e0f ¼

x� d0

x
ec; es or ef ¼

x� d
x

ec ð11Þ

where ec is the strain at the concrete extreme compression fiber of
the section; ei is the concrete compressive or tensile strain at
mid-depth of the ith segment; e0s or e0f and es or ef are the strains
in the compression and tension FRP or steel reinforcement; and d
and d0 are the bottom and top reinforcement depth, respectively.

From Fig. 3, the following equation can be written considering
force equilibrium:X
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� 	
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where Fc is the resultant concrete force; and Cf or Cs
� 	
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� 	

denote resultant compression and tension in the FRP or
steel reinforcement, respectively. Each force is represented as
follows:
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For Eq. (12), the initially assumed neutral axis depth is itera-
tively corrected until sufficient equilibrium accuracy is obtained
using the following convergence criterion:P

Fj j
Fcj j
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where � is the convergence factor which is taken as 1� 10�8.
The curvature and applied moment of the member for a specific

concrete extreme compressive strain is then calculated by
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where Fci is the concrete compressive or tensile force at the centroid
of the ith segment.

Using this approach, the moment–curvature relationship of the
member section is obtained. The flexibility of the member at a
specific section is subsequently computed by considering the cur-
vature corresponding with the moment computed from analysis of
a structure for given loading and support conditions. The effective
flexibility of the member at a specific section can now be written in
the same form as the effective flexibility equations given in
Section 2 as follows:
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Eq. (15) can be used to obtain the stiffness matrix of the mem-
ber and to compute deflections at any section instead of using the
semi-empirical, effective flexibility models given by Eqs. (1)–(6). It
should be noted that the applied moment should not exceed the
ultimate moment capacity since the ultimate moment capacity is
the last point of the moment–curvature curve.
4. Cracked member stiffness matrix

A typical member subjected to a concentrated and uniformly
distributed load along with positive end forces with corresponding
displacements is shown in Fig. 4. A cantilever model is used (Fig. 5)
for computing the relationships between nodal actions and basic
deformation parameters of a general planar element. The basic
deformation parameters of a general planar element can be estab-
lished by applying unit loads in order from 1 to 3. The compatibil-
ity conditions give the following matrix equation:
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0 f 32 f 33

2
64

3
75

P1

P2

P3

2
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3
75 ð16Þ

where fij is the displacement in ith direction due to the application
of unit loads in jth direction and can be obtained by using the prin-
cipal of virtual work as follows:
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L
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Fig. 7. Flow chart of the proposed algorithm.
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where

M2ðxÞ ¼ x; V2ðxÞ ¼ 1 ð18aÞ

M3ðxÞ ¼ �1; V3ðxÞ ¼ 0 ð18bÞ

The flexibility coefficients can be evaluated by substituting (Mi,
Vi) and (Mj, Vj) into Eq. (17b) as follows:
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Table 1
Continuously supported specimen details.

Specimen notation Location Section A–A Section B–B E (GPa) f 0c (MPa)

Reinforcement Material f fu or f y (MPa) Reinforcement Material f fu or f y (MPa)

C-C-OU40 Bottom 5;12 CFRP 1375 5;12 CFRP 1375 137 37.8
Top – – – 3;8 CFRP 1773

C-C-UU40 Bottom 3;8 CFRP 1773 3;8 CFRP 1773 137 42.0
Top – – – 3;8 CFRP 1773

C-C-OO40 Bottom 5;12 CFRP 1375 5;12 CFRP 1375 137 40.2
Top – – – 5;8 CFRP 1773

C-S2-UU40 Bottom 6;10 Steel 575 6;10 Steel 575 200 40.6
Top – – – 6;10 Steel 575

C-B-OU41 Bottom 5;10 BFRP 1350 5;10 BFRP 1350 50 43.0
Top – – – 3;8 BFRP 1250

C-B-UU41 Bottom 3;8 BFRP 1250 3;8 BFRP 1250 50 43.0
Top – – – 3;8 BFRP 1250

C-B-OO41 Bottom 5;10 BFRP 1350 5;10 BFRP 1350 50 42.0
Top – – – 5;10 BFRP 1350

C-S-UU41 Bottom 4;10 Steel 575 4;10 Steel 575 200 43.0
Top – – – 4;10 Steel 575
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In Eq. (17b), (Mi, Vi) and (Mj, Vj) are the bending moments and shear
forces due to the application of unit loads in the ith and jth direc-
tions; Ec denotes the modulus of elasticity of concrete; A and s are
the cross sectional area and shape factor, respectively; and Gc is
the effective shear modulus of concrete due to cracking. Three dif-
ferent models for Gc are as follows:
Al-Mahaidi [36]:

Gc ¼
0:4Gc

e1=ecr
for e1 P ecr ð20aÞ

Gc ¼ Gc for e1 < ecr ð20bÞ



Fig. 10. Experimental and calculated deflections for slab C-C-OU.

Fig. 11. Experimental and calculated deflections for slab C-C-OO.

Fig. 12. Experimental and calculated deflections for slab C-C-UU.

Fig. 13. Experimental and calculated deflections for slab C-S2-UU.
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where Gc is the elastic shear modulus of uncracked concrete; e1 is
the principal tensile strain normal to the crack; and ecr is the crack-
ing tensile strain.

Cedolin and Poli [37]:

Gc ¼ 0:24 Gcð1� 250e1Þ ð21Þ

Yuzugullu and Schnobrich [38]:

Gc ¼0:25 Gc for deep beams ð22aÞ
Gc ¼0:125 Gc for shear wall and shear wall-frame systems: ð22bÞ

Inverting the flexibility matrix in Eq. (16) and writing the equilib-
rium equations results in the (6 � 6) stiffness matrix of the member
in the cracked state.

The required displacement in each direction due to the applica-
tion of span loads can be evaluated by means of the principal of vir-
tual work in the following integral form:

f 10 ¼ 0 ð23aÞ

f i0 ¼
Z L

0

MiM0

EcIeff
dxþ

Z L

0

ViV0

GcA
sdx ði ¼ 2;3Þ ð23bÞ
where displacements in the ith direction due to the application of
span loads can be evaluated by substituting (M0, V0) into Eq. (23b)
as follows:

M0ðxÞ ¼
qx2

2 ; 0 6 x 6 a
qx2

2 ;þPðx� aÞ; a 6 x 6 L

(
ð24aÞ

V0ðxÞ ¼
qx; 0 6 x 6 a

qxþ P; a < x 6 L



ð24bÞ

f 20 ¼
q

2Ec

Z L

0
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Ieff
dxþ qs

A

Z a

0

x

Gc

dx

þ P
Ec

Z L

a

xðx� aÞ
Ieff

dxþ s
A

Z L

a

ðqxþ PÞ
Gc

dx ð25aÞ

f 30 ¼ �
q

2Ec

Z L

0

x2

Ieff
dx� P

Ec

Z L

a

ðx� aÞ
Ieff

dx ð25bÞ

The fixed end member forces for the case of point and uniformly
distributed loads can be evaluated by means of compatibility and
equilibrium as follows:
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P10 ¼ P40 ¼ 0 ð26aÞ
P20 ¼ �ðf 33 f 20 � f 23 f 30Þ=ðf 22 f 33 � f 23 f 32Þ ð26bÞ
P30 ¼ �ðf 22 f 30 � f 23 f 20Þ=ðf 22 f 33 � f 23 f 32Þ ð26cÞ
P50 ¼ �ðq Lþ P þ P20Þ ð26dÞ
P60 ¼ �½�q L2=2� PðL� aÞ � P20Lþ P30� ð26eÞ

Finally, the member stiffness equation can be obtained as

k dþ P0 ¼ P ð27Þ

where kð6x6Þ is the stiffness matrix, dð6x1Þ is the displacement vec-
tor, P0ð6x1Þ is the fixed end force vector, and Pð6x1Þ is the total end
force vector of the member. Eq. (27) is given in the member ori-
ented coordinate system ðx; yÞ; therefore, it should be transformed
to the structure oriented coordinate system ðX; YÞ.

The general case of a member with a uniformly distributed and
concentrated load is obtained by considering a member having
three cracked and two uncracked regions as shown in Fig. 6. In
the cracked regions where M > Mcr, Ieff and Gc vary with M along
the region; therefore, integral operations in Eq. (17) and (23) will
be carried out in each region individually using a numerical
Fig. 14. Experimental and calculated deflections for slab C-B-OU.

Fig. 15. Experimental and calculated deflections for slab C-B-OO.
integration technique which is presented in detail in [39]. The vari-
ation of the effective moment of inertia and effective shear modu-
lus of concrete in the cracked regions necessitate the redistribution
of moments in the structure. Hence, an iterative procedure is
required to obtain the final deflections and internal forces of the
structure.

5. Solution algorithm

An algorithm was developed to carry out the numerical calcula-
tions to determine the load–deflection behavior of a member
before and after cracking using either the moment–curvature rela-
tionships of the steel or FRP reinforced members or available
empirical effective stiffness models. The following are considered
in the numerical procedure:

(a) The member has a rectangular cross section reinforced with
either FRP or steel bars in tension and compression zones.

(b) Any concrete stress–strain model can be used for the com-
pression and tension zones.

(c) An elastic–plastic stress–strain model for steel or a linear
elastic stress–strain model for FRP is used in both tension
and compression.

(d) Moment–curvature relationships of the section or any avail-
able effective stiffness model considering tension stiffening
can be used for computing the member stiffness in the
cracked state.

(e) The structure under consideration can have single or
multi-span beams, and the spans may be subject to a uni-
formly distributed as well as a concentrated load. If the
member has more than one concentrated load, additional
nodes are introduced under the concentrated loads.
Furthermore, additional nodes are introduced where deflec-
tion calculations are required.

(f) Concentrated loads may be incrementally increased up to a
desired load limit.

(g) The members are divided into two uncracked and three
cracked regions to provide a general solution, and the contri-
bution of each region to member stiffness is computed using
a numerical integration technique.

(h) For each different reinforced section in the structure, the
moment–curvature relationship is obtained up to the ulti-
mate moment capacity of the section. The numerical
Fig. 16. Experimental and calculated deflections for slab C-B-UU.
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procedure starts (after selecting the material type, section
parameters, and concrete model) by assuming an initial
value for the strain ðecÞ in the concrete at the extreme com-
pression fiber and a location for the neutral axis. Iterations
are performed until strain compatibility and equilibrium
are satisfied. The values of moment and curvature for the
assumed concrete strain are then determined. By increment-
ing ec , a new moment and curvature are computed.
Corresponding moment–curvature values are continued to
be generated until the maximum specified value for the
extreme compression fiber of the concrete strain, ecu is
reached.

With this calculation procedure, a software program was devel-
oped. Joint displacements and member end forces are obtained
using an iterative procedure as illustrated in the flow chart pro-
vided in Fig. 7. The member end forces used at each iteration are
taken as the mean value of the end forces of all previous iterations.
Fig. 17. Experimental and calculated deflections for slab C-S-UU.

Table 2
Simply supported specimen details.

Specimen notation Loading type Location Reinforcement

S-C-O40 (a) Bottom 5;12
Top –

S-C-U40 (a) Bottom 3;8
Top –

S-B-O41 (a) Bottom 5;10
Top –

S-B-U41 (a) Bottom 3;8
Top –

BRC142 (b) Bottom 2;9:5
Top 2;8

BRC242 (b) Bottom 2;9:5
Top 2;8

B-G1-143 (c) Bottom 2;10
Top 3;16

B-A-143 (c) Bottom 2;10
Top 3;16

B-S-143 (c) Bottom 2;10
Top 3;16
This procedure accelerates convergence of the algorithm. The fol-
lowing convergence criterion is used:

Pn
i � Pn�1

i

Pn
i

�����
����� 6 � ð25Þ

where � is the convergence factor which is taken as 1� 10�2, n is
the iteration number, and Pn

i ði ¼ 1� 6Þ is the end forces of each
member of the structure for the nth iteration.

6. Evaluation of the proposed procedure

To evaluate the accuracy of the calculation procedure, the calcu-
lated results are compared with the load–deflection response from
several studies. These studies include the following:

(a) Three continuous and two simply supported concrete slabs
reinforced with carbon fiber polymer (CFRP) bars, three con-
tinuously and two simply supported concrete slabs rein-
forced with basalt fiber polymer (BFRP) bars, and two
continuously supported concrete slabs reinforced with steel
bars tested by Mahroug et al. [40,41]

(b) Two simply supported concrete beams reinforced with glass
fiber polymer (GFRP) bars tested by Rafi and Nadjai [42]

(c) Three simply supported concrete beams with overhangs
reinforced with glass fiber polymer GFRP, aramid fiber poly-
mer (AFRP), and steel bars tested by Mosley et al. [43].

The test setups for these studies are illustrated in Figs. 8 and 9,
and the specimens were analyzed based on the given support and
loading conditions. Load–deflection curves of the specimens were
calculated using the moment–curvature relationships of the steel
or FRP reinforced concrete sections as well as the ACI 440.1R-06
and Bischoff’s semi-empirical effective stiffness model equations.
These models were selected for comparison because the ACI
440.1R-06 expression represents a weighted average of the
uncracked ðEcIgÞ and cracked ðEcIcrÞ flexural stiffness of the mem-
ber and is widely used for FRP reinforced members whereas
Bischoff’s expression represents a weighted average flexibility
(1/EI) of the member which is considered more accurate for lightly
Material f fu or f y (MPa) E (GPa) f 0c (MPa)

CFRP 1375 137 43.0
– – –

CFRP 1773 137 43.4
– – –

BFRP 1350 50 44.0
– – –

BFRP 1250 50 41.0
– – –

CFRP 1676 234 43.0
Steel 566 194

CFRP 1676 234 42.0
Steel 566 194

Steel 524 200 38.6
GFRP 607 40.5

Steel 524 200 39.2
AFRP 1420 47.1

Steel 524 200 38.1
Steel 524 200
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reinforced members. To compute the tensile strength and modulus
of elasticity of concrete, the following equations were used.

f r ¼ 0:62
ffiffiffiffi
f 0c

q
ðMPaÞ ð26aÞ

Ec ¼ 4733
ffiffiffiffi
f 0c

q
ðMPaÞ ð26bÞ

In the analysis, the CEB-FIB model was used for concrete stress–
strain (eco ¼ 0:002 and ecu ¼ 0:0035) relationship in compression,
the tension-stiffening parameter atsð Þ was set to 5 for the concrete
stress–strain relationship in tension, and Al-Mahaidi model was
used for the effective shear modulus of concrete due to cracking.
It should be noted that the tension stiffening parameter atsð Þ was
varied from 2 to 10 to evaluate the influence of this parameter. It
was determined based on comparison with the experimental
load–deflection curves that the best results were obtained when
this parameter was set to 5. Consequently, a constant value of 5
was used for all analyses.

6.1. Continuously supported slab specimens

Two groups of two span continuously supported slab specimens
were evaluated, and the test setup is shown in Fig. 8. The first
Fig. 18. Experimental and calculated deflections for slab S-C-O.

Fig. 19. Experimental and calculated deflections for slab S-C-U.
group consists of C-C-OU, C-C-UU, and C-C-OO reinforced with
CFRP bars and C-S2-UU reinforced with steel bars [40]. The second
group consists of C-B-OU, C-B-UU, and C-B-OO reinforced with
BFRP bars and C-S-UU reinforced with steel bars [41]. Geometric
and material properties for these specimens are given in Table 1.

Figs. 10–17 present the measured and calculated midspan load–
deflection curves of these specimens. There is generally good
agreement between the analytical and experimental curves. The
experimental curves, however, are slightly softer because they rep-
resent localized responses that depend on the proximity to a pri-
mary crack and potentially also include the effects of moment
redistribution whereas the analytical curves represent homoge-
nized load–deflection responses.

The midspan load–deflection curves for Specimens C-C-OU,
C-C-OO, C-C-UU and C-S2-UU are shown in Figs. 10–13. As seen,
the load–deflection curves obtained using moment–curvature are
closer to the experimental curves for Specimens C-C-UU and
C-S2-UU than the ACI 440.1R-06 and Bischoff’s effective stiffness
equations which provide a stiffer response. For Specimens
C-C-OU and C-C-OO, the load–deflection curves obtained using
moment–curvature and the ACI 440.1R-06 and Bischoff’s effective
stiffness equations are in good agreement with the experimental
curves until approximately 70% of the ultimate load. Beyond this
Fig. 20. Experimental and calculated deflections for slab S-B-O.

Fig. 21. Experimental and calculated deflections for slab S-B-U.
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point, the predicted load–deflection curves provide a slightly stiffer
response with respect to the experimental. The difference between
the experimental and calculated values may be attributed to the
assumption that bonding between the reinforcement and concrete
is perfect. In reality, some bond slippage in CFRP bars may take
place during testing at these higher loads.

For Specimens C-B-OU, C-B-OO, C-B-UU and C-S-UU, the load–
deflection curves (Figs. 14–17) obtained using the moment–curva-
ture relationship show significantly better agreement than the
load–deflection curves obtained using the ACI 440.1R-06 and
Bischoff’s effective stiffness equations which again result in a stif-
fer response. Furthermore, as evident in Fig. 17, the ACI 440.1R-06
and Bischoff’s expressions are not appropriate if post-yielding
response is required. This was also observed in Fig. 13.

One of the differences in the two series of tests is the stiffness of
the reinforcement. Basalt fiber bars have a stiffness that is approx-
imately 1/3 of the carbon fiber bars. This reduced axial stiffness of
the reinforcement clearly has a detrimental influence on the calcu-
lation accuracy of the ACI 440.1R-06 model.

6.2. Simply supported slab/beam specimens

Three groups of simply supported specimens were evaluated,
and the test setups are shown in Fig. 9. The first group of simply
supported slabs subjected to three point bending consists of
Fig. 22. Experimental and calculated deflections for beam BRC1.

Fig. 23. Experimental and calculated deflections for beam BRC2.
S-C-O and S-C-U reinforced with CFRP bars as well as S-B-O and
S-B-U reinforced with BFRP bars [41]. The second group of simply
supported beams subjected to four point bending consists of BRC1
and BRC2 reinforced with CFRP bars in tension and steel bars in
compression [42]. The third group of simply supported beams with
cantilevers on both sides and point loaded at the ends consists of
B-A-1 reinforced with AFRP bars, B-G1-1 reinforced with GFRP
bars, and B-S-1 reinforced with steel bars in tension, and all were
reinforced with steel bars in compression [43]. Geometric and
material properties for these specimens are given in Table 2.

Figs. 18–21 present the experimental and calculated midspan
load–deflection curves using the moment–curvature relationship
as well as the ACI 440.1R-06 and Bischoff’s semi-empirical effective
stiffness equations for slabs S-C-O, S-C-U, S-B-O and S-B-U. All of
the load–deflection curves using moment–curvature show excel-
lent agreement with the experimental curves whereas the curves
predicted using the ACI 440.1R-06 and Bischoff models provide a
stiffer response for Slabs S-C-U and S-B-U. In evaluating these
curves further, it is seen that for the carbon reinforced specimens,
the ACI 440 and Bischoff’s expressions corresponded well for
S-C-O, but not quite as well for S-C-U. The primary difference in
these specimens was that S-C-U had a significantly lower amount
of flexural reinforcement. Similarly for the basalt specimens
(S-B-O vs S-B-U), a reduction of the area of reinforcement resulted
in the ACI 440 expression greatly over estimating the stiffness. A
(a) End deflection 

(b) Midspan deflection 

Fig. 24. Experimental and calculated deflections for beam B-G1-1.



C. Dundar et al. / Composite Structures 132 (2015) 680–693 691
similar trend, but not as significant, is observed with the Bischoff
expression. Finally, in comparing specimens S-C-U and S-B-U
which contained the same amount of reinforcement, but different
axial stiffnesses of the reinforcement, it is evident that the flexural
stiffness of the member is impacting the results of the ACI 440
model. The moment–curvature approach, however, is capable of
providing consistent predictions regardless of the flexural stiffness.

Figs. 22 and 23 present the experimental and calculated mid-
span load–deflection curves for beams BRC1 and BRC2. There is
very good agreement between the experimental and predicted
curves for all models. The ACI 440.1R-06 and Bischoff models result
in a slightly stiffer responses for both beams as failure was
approached.

The third group of specimens were designed to evaluate the
bond strength of the FRP bars [43]. Therefore, the specimens were
reinforced for negative moment with three 16 mm bars in the top
of the specimens and were lap spliced at the center of the constant
moment region. Two 9.53 mm steel bars were included at the bot-
tom of the specimens. Specimens B-G1-1, B-A-1 and B-S-1 all had a
457 mm splice length, and Figs. 24–26 present the experimental
and calculated load–deflection curves for both the cantilever and
at midspan of the specimen.
 (a) End deflection 

(b) Midspan deflection 

Fig. 25. Experimental and calculated deflections for beam B-A-1.
Fig. 24 presents the end and midspan load–deflection curves for
glass specimen B-G1-1. As shown, the experimental and calculated
curves obtained using moment curvature are in good agreement
for both the end and midspan deflections whereas the ACI
440.1R-06 and Bischoff effective stiffness models provide a stiffer
response at both locations, especially for the end deflection.

Fig. 25 presents the end and midspan load–deflection curves for
aramid specimen B-A-1. The deflections calculated at the end of
the beam using moment curvature show excellent agreement with
the experimental results whereas the ACI 440.1R-06 model results
in a significantly stiffer response. On the other hand, the midspan
load–deflection calculated with the moment–curvature relation-
ship provided a slightly softer behavior with respect to the exper-
imental. This difference may be due to the lap-spliced region at
midspan because the top reinforcement is doubled in this region.
The ACI 440.1R-06 model again provides a significantly stiffer
response. The Bischoff model also provides a stiffer response with
respect to the experimental behavior but a softer response com-
pare to that of ACI 440.

Fig. 26 presents the end and midspan load–deflection curves for
the steel specimen B-S-1. As shown, there is good agreement
between the experimental values and those calculated using
(a) End deflection 

(b) Midspan deflection 

Fig. 26. Experimental and calculated deflections for beam B-S-1.
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moment curvature as well as the ACI 440.1R-06 and Bischoff mod-
els for midspan deflection. On the other hand, a slightly stiffer
response is obtained for the end point deflection with respect to
the experimental for all approaches.

7. Summary and conclusions

A numerical procedure was developed for calculating the
deflection of concrete members reinforced with either
fiber-reinforced polymer (FRP) or steel bars. This procedure consid-
ers the effective flexibilities of cracked members using either the
curvature distribution along the member or available
semi-empirical effective stiffness models. With this procedure,
statically indeterminate structures, such as continuously sup-
ported beams subjected to any intermediate loading, can be ana-
lyzed. Furthermore, the load–deflection behavior of a concrete
member reinforced with either FRP or steel bars can be rapidly
determined using this approach.

The numerical procedure was used to calculate the deflections
of 17 short-term flexural tests of FRP and steel reinforced concrete
beams and slabs reported in the literature. To evaluate the validity
of the proposed procedure, comparisons are made between the
experimental and analytical load–deflection response of the 17
reinforced concrete specimens. The results of this study demon-
strate considerable promise in accurately calculating the load–
deflection behavior of reinforced concrete specimens. The calculated
load–deflection curves, which use the moment–curvature relation-
ship, in general provided excellent agreement with the experimen-
tal curves. On the other hand, the ACI 440.1R-06 semi-empirical
effective stiffness model provides a varied response. In general, a
stiffer response is provided as the flexural stiffness is decreased
which is common with the use of low modulus reinforcement
materials or low flexural reinforcement ratios. On the other hand,
the Bischoff model provides a softer response than the ACI 440
model for the aforementioned case because it represents a
weighted average of flexibility which is more appropriate for mod-
eling deflections over a wider range of member stiffness [25].

Using this analysis procedure and integrating the moment–cur-
vature response provides a number of benefits. First, the analysis
can account for varied reinforcement materials from low stiffness
FRP materials such as glass to steel. Second, the analysis inherently
accounts for the variations in the flexural reinforcement ratio.
Finally, the analysis can calculate deflections across the entire
range of behavior from uncracked up to flexural failure including
post-yielding response if applicable. Therefore, this procedure is
not limited to a range of behavior such as only for serviceability
deflections. Overall, the approach provides a general deflection cal-
culation procedure.
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